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_ _ _ _ _INTRODUCTION

In a previous paper [2] we studied the (decomposable)

Kronecker product A ® B of finite rank linear trans forma-

tions A and B on comp lex Hilbert space , and the relation

to (decomposable) dyadic products (U](V) , where U and V

are also finite rank linear transformations . (Definitions

of these products are in the following section.) In partic-

ular, we characterized those linearly independent families

IU11 , (VJ~) with the property that

E (u1][V1) — A ® B (1.1)
i—i

for given transformations A and B . (Bt denotes the trans-

pose of B .) In this paper, we extend the analysis of (1.1)

by characterizing the generating sums

N
~ (U1] [V1) — R (l.2a)
i—i

N
Z~ (U1 ® V1) — S (1.2b)

i—i —

where R and S are general linear transformations and not

jus t decomposable Kronecker of dyad products . Thus , this

paper improves upon [2] in the three respects :

(a) The sums (1.2a) and (1.2b) are more general.

Moreover, they will be characterized without

assuming linear independence of the families

— 1 —
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(U1) , (v1) . (Th. 3.2.)

(b) The relations among the transformations R ,

S , (U1) , (V1) will be natural in the

sense that they do not depend on particular

matrix representations of the functions in

question. This matrix dependence was used

in [2] in the ana lysis of (1.1) .

(c) We show a duality between the operations

“][“ and “®“ , so tha t charac terizing

(l.2a) is equivalent to characterizing

(l.2b). (Th. 4.2, 4.3.)

• We briefly mention one motivation for studying equations
• of the form (1.1). If A — (ajj) and B (bik) 

are each

• 2 x 2 scalar-entried matrices, then the classical definition

of matrix multiplication says that the four entries

cik —
~~

J (aiJ 
•b )  , 1 , k — i , 2 , (1.3)

of the matrix product AB generally require eight scalar

multiplications, viz., the eight products (ajj b
ib) ‘

3 , k — 1 , 2 . In the landmark paper of Strassen [5], he

shows that there are seven scalar products, (a11 + a22)

+ b12) , (a11 + aj2) • (b22) , etc., whose sums and

differences suffice to produce the four scalars cik of (1.3).

Now in (3] it is shown that if A and B are consistent

rectangular matrices (1 .e., AB is defined), and if I is

an identity matrix, then the scalars cik of AB each iden-

tify with a certain Kronecker product Eik ® I , while the

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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generating scalar products (such as (a11 + a22) 
. (b 11 + b 12)

(a11 + a12) • (b22) ,...) each identify with a unique dyadic

product (U][V) . To minimize the number of scalar products

which produce all entries of matrix AB is equavlent, there-

• fore, to minimizing the number of dyadic products (U1][V1)

whose sums and differences produce all the Kronecker products

Ejk ® I — ~~~~~~~~~ (U1](V1) . From (1.2a) and (l.2b) we derive

some interesting special cases.
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PRELIMINARY RESULTS AND DEFINITIONS

Families (u1) , (vi) , 1 — 1 , 2 ,..., N in Hu bert

space are !~i,rth~~ mal if (Uj,Vj
) = , the Kronecker

delta. 
~~K1 

denotes all bounded linear transformations

sending HUbert space ~i to Hu bert space K ; among these

are the rank one 4y~ds (x x y) for x e K , y e H , where

for all z e $ , (x x y) :z -. <z,y)x . The adjoint of

A c £(H,K) is A* (which belongs to £(K,H)) and is defined

by (Ay,x) = (y,A*x) for all x e K , y e H . From this

we see that for (x x y) e £(H,K) , A e £(IC,H ’) and

B e £(H’,E) , we have

A (x x y) — (Ax x y)

and (2.1)

*(x x y)B — (x x B y)

The space £(H,K) accepts an inner~product (~~J defined

by (A ,B] — tr(B*A) , the trace of B*A in £(H,H) , where

A , B e £(H ,K) . The ~y1ad of transformations A c L(R~~H2)

and B ~ £ (K1,1C2) is denoted by (A][B) , where

(A] [B) :C -. (C,B]A (2.2)

for all C a £(K1,K2) . cf. [4, ~~ 5, *5].

For Hu bert space H , 11 denotes the Hu bert space of

linear functionals on H ,where for x e H , ~~c f f  is given

by

4 (y,x) (2.3) .:~ :.
‘ 

-

— 4 —
~~ 
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for all y a K . The trans~~~,~ At of A c c(H,K) is that

transformation sending 1~ to IT defined by At(~)(x) ~(Ax)

for all x c H , c • As a special case the transpose of
p 

a dyad is (x x y)t _ (~~x~~) while its adjoint is (x x y)*

— (y xx ) . If A c  £(H1,H2) , B a  £(K1,K2) , then the

Kronecker ~~oduct A ® B t of transformations A and Bt is

given by S

A ® Bt:C -. ACB (2.4)

for all C a £(K2,H1) . cf. [4 , p. 211).

For any transformation A , the symbols and n(A1

denote the range of A and the nulispace of A , respectively,

while M ’ denotes the orthogonal complement of subsapce M

If M C H , then

A a £(M,rgA) c C(H,H’) (2.5)

wili mean A :M~~~r g A c H’ , M c H , and

A:M~ -. 0 , (i.e., M is orthogonal to n(A))

An important relationship between the dyad and Kronecker prod-

ucts is given by

(x x y)J[(u x v) — (x x u) ® (
~ x ~

) (2.6)

for all x , y , u , v in (possibly different) Hilbert

spaces. ef. [1, p. 131). Finally, for vectors (X1:i — 1

2 ,..., N) the symbol sp(X~ :i—l , 2 ,..., N> or Sp<X)~~
~~w ~~~~ LrLr n~~ww  W ~~~‘Wl -

will denote their linear span.
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THE MAIN RESULT

We now characterize the terms (U1][v1) of sum (1.2a)

given transformation R • The following terminology will be

convenient

Definition 3.1. For the families of linear transformations

(U1) C £(H1,H2) , (V1) c £(K1,K2) , we define their respective

ranks r
~~ , r~ 

by

— dimension (sp (U1)) ,
(3.1)

rv 
= dimension (sp(V1))

For any linearly independent family (U1) , then biorthonormal

~~~~ 1ement to (U1) is that unique linearly independent sub-

set (U1) of sp(U~) such that

(Uj~Uj J Sj3 ~ the Kronecker delta. (3.2)

Remark. Biorthonormality is a natural generalization of

orthonormality. Indeed, if CU~) is not only linearly inde-

pendent, but orthonormal as well, then we would have a

for each i • Also suggestive of orthonormality is that any

element Z a sp (U1) — sp<U1) has representation

z — ~[z,u~)U~ — Z~(z,u1]~1 (3.3)
1 1

which follows from (3.2).

Theorem 3.2. (1) Given any linear transformation

R:t(K1,1C2) -. £(H1,H2)

1~..- 6 —

‘

-.
~~~~
.•l- ~~~~ 
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(2) Given integer k ~ 0 , and any

(ru+k)_element set of trans formations

(U1) , such that rgR c sp(U~) C £(H1,H2)

where (by reordering if necessary) the

first r
~ 

elements form a basis for

sp(U1) • Accordingly, if k > 0 we are

given unique scalars f aj 0) i defined

by

U 4 — 
~~~ ~~~~~~~ , 3 — r + 1

J i=i~~ 
“~

,..., r~~+k
(3) Given arbitrary linear transformations

(for k >O)

Vr + l , Vr+2,..s,Vr + k c J:(Kl,K2).

We conc lude that

N
E (UiJ[(Vj) = R , N = r + k (3.4)
i—i — U

if, and only if, each V~ — £(K1 , K~) , 
j  1 , 2 ,..., r~ ,

is given by

** N
V~ — R (U1) 

- 
~~~ cL1”3~ V1 , i — 1 , 2 ,.. ., r (3.5)

— j=r~ +l J U

where .N — r
~ 
+ k , and the scalars (cL1~

3
~) are defined in

Hypothesis (2) . If k — 0 , then V1 — R*QJ1)

Proof (3.4)*(3.5). We apply both sides of (3.4) to ar-

bitrary Z a £(K1,K2) to obtain
N

~D [z,Vj]Uj R(Z) £ rgR • (3.6)
i—i —

- .m ~ —- .
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That is, R(Z) a sp(U1) , so that from (3.3), we may write
r
~

R(Z) — E [R(z) ,u lu
i=l ~ i

r (3.7)
U **

= Z [z ,R (U4 ) ] U
i—I. a.

We reformulate (3.6) as follows , where N = r
~ 
+ k

For all Z £ £(K1,K2) ,

N
E [z ,V1]U1 + ~~~ [z ,v3 ]u 4 = R(Z)
i—I. j=r~+l -‘
ru N .k

~~E [z ,V1 + Z~ a1~3~v4 - R (u~ )]U 1 = 0
i-’l jar

~
+l -~

This last equation is obtained by substitution of equations

for the Ufs (Hypothesis (2)) and (3.7) This implies that

* 
N 

~~~~~~~~~~~~~~V1 — R (U1) 
- E aj  ~~ V

3 , 
i — 1 , 2 ,...,

j’r
~
+l

which establishes that (3.4)=~(3,5).

(3.5)s(3.4): Substitute (3.5) into (3.4) and the proof is

by verification. This ends the theorem.o

Remark. We note that our Hypotheses (2) wherein we as-

sume sp(U~> ~~~ rgR , is also a necessary condition if (3.4)

is to obtain. This is immediate from (3.6). Finally, we

observe that Theorem 3.2 is the generalization of (2, Th. 3.1]

which replaces R with A ® Bt and requires linear inde-

pendence of the families (U~3 , [vi)

I 
_ _  

_ _ _ _ _ _ _ _ _ _~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ - 
-_ --_- - 5-
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A DUALIIY THEOREM

Having completely characterized compenent terms (Uj ] [V i)

for sums (3.4), we raise the question whether a characterization

is possible with terms of the form U~ ® V1 , i.e., if “0”

replaces “] [“  . With minor modification, (3.4) is equivalent

to such a sum. In developing this idea, we come to

Definition 4.1. Given U c £(H1,H2) , V £

Then the linear t rans formation 0 is defined by

~ (U] [v) = U ®  V (4.1)

(linear extension defines ~ on sp( (U][V) )

We present the theorem which says that in (4.1) , oper-

ations “] [“  and “ ®“ may be interchanged.

Theorem 4.2. The equation

~ (u ][v) = U ®  V (4.1)

is valid for all U a £(111,H2) , V a £(K1,K2) if , and only

if,

~ ( P ®  Q) — (P][~) (4.2)

for all P £ £(K2,H2) , Q ~ £(1~~~,ff~~)

Proo f. Without loss of generality (due to linear exten-

sion), we may suppose U , V , P and Q are all rank one

transformations, Now set

I
- 9 -

5- -~~ 
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U (u2 x u1) u1 a H1 , u2 a H2

V (v2 x v1) v1 c , V2 £ 
1(2

• P ( u 2 x v 2 )

Q — ( ~I1 x~~1)

Then

Ø (U] (V)  = u ® V

~ ø( ( u2 x u1)] [ (v 2 x v1))  = (u2 x u 1) ® (
~~ x

~ 0((u~ x v2)® (~i1 x ~~)) — (u2 x v2)]((u1 x v1) from (2.6)

;! ~ (P (P] (~~)

Since the above equations hold for rank one transformations,

linear extension guarantees validity for arbitrary finite

S 
rank transformations, and thm theorem is proved. D

An immediate application of this result is a dual formu-

lation of Theorem 3.2 , which we state without proof.

Theorem 4.3 (dual to Th. 3.2) . Given Hypotheses (1) , (2)

and (3) of Theorem 3.2 then

N• 2D (U 1] ( ( V ~ ) = R
i—i

if, and only if,

~ U~, ® V1 = 0 (!)
where o(XJ[Y) — X ® V ,

if, and only if,

R~ (Ui) ~ ~V3 , i — 1 , 2 , . . .,  r
~

Remark. One difficulty with Theorem 4.3 is that although

we may know a good deal about ~ , we may not be able to under-

stand the precise form of 0(RJ . In the next section, we
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present applications and special cases where this difficulty

does not arise. 
-

1

I 
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_
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SOME APPLICATIONS AND SPECIAL CASES

The case (ui) is linearly independent.

Theorem 5.1. If R is a linear transformation of f 1-

nite rank M , and if (U1,U2,...,U~) is a baits ‘r rgR ,

then there is one and only one basis (V1IV2I•~~• ,VM) of rg~~
’

such that

M
- ~~ (U111(V1) — B . 

(5.1)
i—i

In fact ,

V1 — R~(U~) i — 1 , 2 ,..., M . (5.2)

I 

Proof. This is just Theorem 3.2 when k 0

Now Theorem 5.1 gives us, as a special case, Theorem 3.4

of (21 , which we state, along with a dual form which is a

consequence of Theorem 4.2.

Theorem 5.2 (plus dual to [2, Th. 3.4]). Let A and B

be linear transformations of ranks r and s , respectively.

Let (UpU2,...,U~8) be a basis for 
£(rgB*,rgA) . Then

there is one and only one basis (V1 ~V2~ ••• ,Vrs) for £(rgB ,rgA*)

such that

rs
~ (U1)((Vj) — A ®  B~ , 

(5.3)
-; i—i

which obtains if, and only if,

-12 -

~~~~~~~~~~
•-_ ;

~~~~

_

~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ 
— -
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ra 

*
~ U~ ® V1 — (A](B ) . (5.4)
i—i

Moreover,
*A  *V~ — A U~B , i — 1 , 2 ,..., rs (5.5)

Proof. Display (5.3) follows from (5.1) with A ®

replacing R , while (5.4) follows from (5.3) by using the

the duality Theorem 4.2. The exact form (5.5) for the V1’s

follows from (5.2). (We note, an explicit description for

the V1’s is missing from [2, Th. 3.4].) We observe that

for the special case R — A 0 Bt , we have rgR — £(rgB*,rgA)

and rgR* — £(rgB,rgA*) (cf. (2.5)) so that the hypotheses

of Theorem 5.2 are consistent with those of Theorem 5.1; and

the proof is done.o

Thecase R — O .

We raise the question: When do dyads or (with help of

Th. 4.2) Kronecker products sum to zero? We remark that an

answer to this question is an answer to the question: When

do dyads (resp. Kronecker products) sum to another dyad (resp.

Kronecker product)? This is clear since

N N-l
~ (U4](V4) — 0 ~ ~ (U4]((V4) — -(UM][V,,)a. a. a. a.

For the statement of the next theorem, we will not need the

fact that the compenent vectors U~ , V1 are linear trans-

formations. Accordingly, they will be presented only as el-

ements in Hilbert space. The proof of the following theorem

is direct, given Theorem 3.2.

Theorem 5.3. Given linearly independent (Ul,U2,...,UN)

E ~ -•
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in Hilbert space H , and k vectors

Ur+t — i~1
at -‘~~u1 a sp(U1:i — l,2,...,r)

t — 1 , 2 ,., ., k

Then for any k-element set of vectors

Vr+l , V~~2 ,. ,,~~ 
V~~~ a H

there is one and only one r-element set of vectors

V1 , V2 ,..., Vr C H (5.6)

such that

r+k
S E (Ui][Vi) — 0 , (5.7)

1—1

which holds true if , and only if ,

r+k
E U~~0V~~a 0 .  (5.8)
i—i

Moreover, the V~ of (5 .6),  (5.7) and (5.8) are given by

r+k
V~ - E a 1~3~v4 , 1 —  1 , 2 ,.. ., r . (5.9)

jar -~

The case It — I , the identity.

N
It is known, of course, that if E (Ui][Vj ) — 1N the

1—1

identity in N-dimensional space, then it suffices that

U1 — V1 and (U1) is an orthonormal basis. Slightly more

• general is the condition that (U1) and (V1) be complemen-

tary biorthormal sets (cf. (3.3)). But Theorem 3.2 subsumes

both these cases and presents the general situation as follows:

Theorem 5.4 (decompositions of the identity). Given any

spanning set U1 , U2 ~~~~~~~ 
UN for HUbert space H , i.e.,

-~~~~~~~~~ ~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~
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sp (U1> — H , where dimension H — r � N . Suppose the first

r vectors U1 , U2 ~~~~~~~~~~ 
Ur for a basis for H . Then for

n - r arbitrary vectors

Vr+1 , V~~2 ,..., V~~e H ,

there is a unique r-element set of vectors

V1 , V2 ‘~~~~~~‘ ~‘r 
a H (5.10)

such that

N
E (Uil[Vj) — tr the identity on H
i—l

Moreover, the vectors of (5.10) are given by

A N )V1 U1 - Z aj ~
3 V., , 1 — 1 , 2 ,... , r , (5.11)

j—r+l -~

where the scalars are defined by

r
U4 ~~a4~

3
~U4 ,  j — r + l , r + 2 ,...,N .

• 
-~ i—i a. a.

Remark. The context of Theorem 5.4 does not lend itself

to an interesting dual statement via Theorem 4.2, unless we

are interested in when the sum of Kronecker products U1 0 V1
- 

- 
• produces the particular rank one operator 0(Ir):z 

-. ZIr
for all complex z

_ _  _ _  
~~~~~ ~~~~~~~~~~~ — - -

~~~~~~~
——
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